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1. Introduction

The chiral symmetry breaking is one of the most famous nonperturbative phenomena in

QCD, which have been attracting a great deal of interest for a long time. Chiral symmetry,

which is an approximate global symmetry in QCD, is spontaneously broken by nonpertur-

bative dynamics of QCD. The broken chiral symmetry leads to large constituent quark

masses of a few hundred MeV [1 – 3], which are responsible for about 99% of mass in the

world, aside from some unknown factors such as dark matters.

The spontaneous chiral symmetry breaking is caused by non-zero chiral condensate

〈ψ̄ψ〉, which is directly related to non-vanishing spectral density at the spectral origin of the

Dirac operator, via the Banks-Casher relation [4]. The level dynamics of Dirac eigenvalues

is then essential for the chiral phase transition. As for QCD, the level statistics of the low-

lying eigenvalues of the Dirac operator has been studied with much effort and it is known

to be reproduced by the random matrix theory (RMT) with the same global symmetry.

There however remain several issues to be studied from the microscopic viewpoint.

The spontaneous chiral symmetry breaking can be also seen in compact QED in 1+3

dimensions. Compact QED in a strong-coupling region exhibits the charge confinement

as well as the spontaneous chiral symmetry breaking like QCD. Its nature has been also

studied by many groups so far [5 – 27].
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The key ingredient for the nonperturbative features in compact QED would be monopoles

in a microscopic sense. Monopoles play essential roles in the charge confinement and its

phase transition, and would play important roles also in the chiral symmetry breaking.

As a matter of fact, neither the confinement nor the chiral symmetry breaking occurs

without monopoles’ degrees of freedom. In this paper, we mainly pay attention to the

spatial distributions of low-lying Dirac eigenmodes in quenched compact QED, because

the low-lying eigenvalue dynamics, which is responsible for the chiral symmetry breaking,

is considered to have a close connection with the low-lying eigenfunctions. We investigate

the spatial correlations between low-lying eigenfunctions and monopoles, the key player in

the nonperturbative dynamics in compact QED.

The paper is organized as follows. We give the formalism employed in the present

analysis in section 2. In section 3, the fundamental features of the low-lying Dirac modes

are summed up. We show the lattice QED results in section 4. Section 5 is devoted to

the discussions and the speculations based on the present lattice QED results. We finally

make a summary in section 6.

2. Formalism

2.1 compact QED

The Wilson gauge action for compact QED is written as

SQED = β
∑

x

∑

µ,ν

(1 − Re Pµν(x)) (2.1)

with link variables Uµ(x) ≡ eiθµ(x) ∈ U(1) and plaquettes Pµν(x) ≡ Uµ(x)Uν(x + µ̂)U †
µ(x +

ν̂)U †
ν (x). The constant β ≡ 1

e2 corresponds to the coupling constant. Here, the angle θµ(x)

ranges from −π to π. Defining a plaquette angle θµν(x) ≡ θµ(x) + θν(x + µ̂)− θµ(x + ν̂)−

θν(x) ∈ (−4π, 4π], SQED is represented as

SQED = β
∑

x

∑

µ,ν

(1 − cos θµν(x)). (2.2)

This compact formulation leads to several nonperturbative phenomena, such as the chiral

symmetry breaking or the charge confinement at small β. Indeed, at zero temperature,

compact QED has two phases; the confinement phase and the Coulomb phase. These two

phases are separated with the critical value βc = 1.0111331(21) [24]. The system is in the

confined phase at β < βc, while it’s in the Coulomb phase at β > βc. The phase transition

is weak first order.

In this paper, we employ 123 × 12 lattices at β=0.99, 1.01 and 1.03. We generate

and investigate independent 48 gauge configurations at each β, which are generated with

the standard Wilson gauge action imposing the periodic boundary conditions in all the

directions. The system at β=0.99 (1.03) clearly lies in the confinement (Coulomb) phase,

respectively, but the 123 × 12 system at β=1.01 is marginal. “Finite temperature” phase

transition in compact QED was extensively investigated in ref. [26], and the “transition
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Figure 1: The numbers of the sites occupied by the i-th largest monopole cluster are plotted,

which are obtained with 48 configurations at each β.

temperature” 1/T at β=1.01 is found to be about 1/T ∼ 6. Then the 123 × 12 system at

β=1.01 is considered to be in the confinement phase.

As we mentioned in section 1, the key ingredient in compact QED in the confinement

phase is monopoles’ degrees of freedom. In order to extract monopoles, we divide plaquette

angles θµν into two parts; physical fluxes θ̄µν ∈ (−π, π] and Dirac strings 2πnµν .

θµν = θ̄µν + 2πnµν (2.3)

nµν ∈ [0,±1,±2] is integer-valued and corresponds to the number of the Dirac strings pene-

trating the plaquette. We can now define the integer-valued DeGrand-Toussaint monopole

current mµ(x) [5] in a gauge-invariant manner;

mµ(x) =
1

2
εµνκλ∆+

ν nκλ(x), (2.4)

where ∆±
µ is a forward and backward derivative operator on a lattice, respectively. The

monopole currents mµ(x) satisfy the conservation law ∆−
µ mµ(x) = 0 and hence form closed

loops.

Monopole currents can be unambiguously classified into monopole clusters Ci
mon. In

ref. [28], it was conjectured that the largest monopole cluster C1
mon occupies most of

monopole currents and only the largest monopole cluster is relevant for the color con-

finement. In figure 1, we show the scattered plots of the numbers of the sites occupied by

the i-th largest monopole cluster at each β, which are obtained with 48 configurations at

each β. At β=0.99 and 1.01, we find prominently large monopole clusters of the length

of about 10000, whereas we find no large cluster at β=1.03. The second largest cluster

C2
mon is much smaller than the largest cluster C1

mon in the confinement phases, especially at

β=0.99, which is the same tendency as that reported in ref. [28]. This feature may indicate

the possible interrelation in compact QED between the nonperturbative feature and the

appearance of large monopole clusters which cover almost entire volume.

2.2 Overlap fermion

For the fermion action, we employ the overlap formalism [29, 30]. The overlap-Dirac
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Figure 2: The histograms Hev(λ) of the eigenvalues λ of the overlap-Dirac operator D are

plotted for each β. The horizontal axis denotes −iλ. All the eigenvalues λlat lying on a circle in a

complex plain are stereographically projected onto the imaginary axis via Möbius transformation,

λ = λlat

1−λlat/2ρ .

operator D is constructed as

D ≡ ρ[1 + γ5sgn(HW )] ≡ ρ

[

1 + γ5
HW

√

HW
2

]

(2.5)

and realizes the exact chiral symmetry on a lattice satisfying the Ginsparg-Wilson rela-

tion [31, 32]

γ5D + Dγ5 = ρ−1Dγ5D. (2.6)

Here, HW ≡ γ5(DW −ρ) is the hermitian Wilson-Dirac operator defined with the standard

Wilson-Dirac operator DW . The “negative mass” ρ is chosen in the range of 0 < ρ < 2,

which we set 1.6 throughout this paper. We approximate the sign function sgn(HW ) by

150 degrees’ Chebyshev polynomial [33], treating O(200) lowest eigenmodes of HW exactly.

In the present analysis, we impose the periodic boundary conditions in all the spatial

direction for the fermion fields, whereas the anti-periodic boundary condition is imposed

in the temporal direction. We compute lowest 50 eigenpairs for each β implementing a

restarted Arnoldi method [34]. All the eigenvalues λlat of D, which lie on a circle with the

radius of ρ in a complex plain, are stereographically projected onto the imaginary axis via

Möbius transformation [35],

λ =
λlat

1 − λlat/2ρ
. (2.7)

3. Low-lying Dirac modes

We briefly survey the properties of Dirac eigenmodes in this section.

We first show the histograms Hev(λ) of Dirac eigenvalues in figure 2, where the hori-

zontal axis denotes −iλ. Since a non-zero eigenvalue is always accompanied by its complex

conjugate, the figure is symmetric about the Hev axis. We find exact zero modes in the

confinement phase at β=0.99 and 1.01, but on the other hand no zero mode is seen in

the Coulomb phase at β=1.03, which is consistent with the previous works [23, 25]. The
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ν = 0 ν = 1 ν = 2

β = 0.99 12 30 6

β = 1.01 32 12 4

β = 1.03 48 0 0

Table 1: The numbers of exact zero-modes found in 48 gauge configurations are listed. The i-th

column gives the number of configurations with 0, 1, 2 zero-mode(s), respectively.
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Figure 3: The scattered plots of inverse participation ratios of low-lying Dirac modes at β=0.99,

1.01 and 1.03. The horizontal axis denotes −iλ, the associated eigenvalue to each Dirac mode.

numbers of zero modes found in 48 gauge configurations at each β are listed in table. 1.

The other prominent difference can be seen in the spectral density at the spectral origin.

At the strong coupling (β=0.99 and 1.01), the density ρev(λ) of near-zero modes is rather

dense, while it rapidly goes to zero at β=1.03 as ∼ |λev|
3. These non-vanishing eigenvalue

densities at λ ∼ 0 are directly connected to non-zero chiral condensate via Banks-Casher

relation [4] as

〈ψψ̄〉 ∝ ρev(0). (3.1)

Such dense spectral density is then considered as a signal of the broken chiral symmetry

in the strong-coupling compact QED.

We next extract the inverse participation ratio (IPR) for each eigenmode at each β.

The IPR I(λ) is defined as

I(λ) = V
∑

x

ρIPA(x)2, ρIPR(x) ≡
∑

a,α

|ψλ(x)|2. (3.2)

Here, V denotes the system volume and ψλ(x) is the eigenfunction associated with an

eigenvalue λ normalized as
∑

x |ψλ(x)|2 = 1. The Roman and Greek alphabets a and α

are the indices for a color and a spinor, respectively. The density ρIPR(x) is obtained by

locally summing up the absolute square of each component of an eigenfunction ψλ(x) only

over its color and spinor indices. The IPR is unity when ψλ(x) maximally spreads over

the system and equals to V in the case when ψλ(x) lives only on a single site, reflecting

the spatial distribution of the eigenfunction ψλ(x). As one can see in figure 3, zero modes

exhibit much larger IPRs than the other low-lying modes (near-zero modes). This tendency
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Figure 4: The density histograms Hall
ψ and Hmon

ψ at β=0.99 are plotted as the function of ρψ.

The histograms Hall
ψ , which are counted over all the site, are shown as open bars. The histograms

Hmon
ψ , which are counted only on monopole currents are shown as solid lines.

implies the stronger localization property peculiar to zero modes in compact QED. The

IPRs for near-zero modes have β-dependence; the IPRs at larger β are smaller than those

at smaller β as a whole, which implies that near-zero modes get delocalized as we increase

β. This delocalization property of near-zero modes was also found in ref. [25]. Dirac modes

in the weak coupling limit are expected to be plain waves and to be completely delocalized.

The ρ(λ) and the IPR at β=1.03 supports this expectation.

4. Histograms of Dirac eigenmodes

Our main concern in this paper is a relationship between Dirac modes and monopoles.

Though the IPR surely reflects one aspect of a spatial distribution of an eigenfunction,

it can say almost nothing about the shape of an eigenmode. The difficulty in such an

analysis comes from the difficulty in a quantitative evaluation of the detail of eigenfunction

distributions.

We first concentrate ourselves on the eigenfunction-density histograms Hall
ψ (ρψ). The

density ρψ ≡ ρIPR here is merely the same quantity as the IPR density ρIPR of a Dirac

eigenfunction ψλ(x). The open bars in figure 4 show the typical density histograms Hall
ψ

counted at all the sites for both zero and near-zero modes at β=0.99. The histograms Hall
ψ

for zero modes have a relatively long tail at large ρψ and show a large height at ρψ ∼ 0 in

contrast to those of near-zero modes, which also exhibits the stronger localization property

of zero modes.

We next investigate another type of histogram Hmon
ψ (ρψ), which is defined by counting

only “ρψ on monopoles”. Hmon
ψ is here normalized as

∫ ∞
0 Hmon

ψ (t)dt =
∫ ∞
0 Hall

ψ (t)dt. Taking

into account that monopoles are by definition located at the intermediate points x̄ ≡

x + (1/2, 1/2, 1/2, 1/2), ρψ’s are simply redefined by averaging them around intermediate

points x̄ as

ρψ → ρψ(x̄) ≡
∑

|x−x̄|=1

ρψ(x)/24 (4.1)

In figure 4, we show the histograms Hmon
ψ for both zero and near-zero modes counted

on the monopole world lines at β=0.99 as solid lines. At small ρψ, we can find a remarkable
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Figure 5: The histogram ratios Rψ(ρψ) for zero (upper two panels) and near-zero modes (lower

three panels) at β=0.99, 1.01 and 1.03 are plotted in the range of 0 ≤ ρψ ≤ 0.0002. We draw a line

at Rψ(ρψ) = 1 for reference.

difference especially for near-zero modes. At ρψ < 0.00005, the histogram Hmon
ψ counted

only on monopoles takes a larger value than Hall
ψ counted over all the sites. On the other

hand, at ρψ > 0.00005, Hmon
ψ tends to be smaller than Hall

ψ . This tendency indicates that

monopoles “run” on the sites where the density ρψ of Dirac eigenfunctions is small. Or we

can say that near-zero Dirac modes are localized avoiding monopoles.

We define and investigate the histogram ratios Rψ(ρψ) in order to evaluate the corre-

lations in a semi-quantitative way;

Rψ(ρψ) ≡
Hmon

ψ (ρψ)

Hall
ψ (ρψ)

, (4.2)

This quantity Rψ(ρψ) equals to 1, if there is no correlation between the spatial fluctuations

of Dirac modes and monopoles. In the case when a positive (negative) correlation exists

between the spatial fluctuations of Dirac modes and monopoles, Rψ(ρψ) > 1 at smaller

(larger) ρψ and Rψ(ρψ) < 1 at large (smaller) ρψ hold.

We here evaluate Rψ only with ρψ < 0.0002, because histograms Hψ are quite sparse

at ρψ > 0.0002 and this simple analysis cannot be reliable. (For the Rψ(ρψ) for near-

zero modes, we simply average R over all the available near-zero modes.) The ratios (to

1) of the squared norms of the Dirac modes obtained by summing up only ρψ > 0.0002

are 12(7)%, 15(11)% for zero modes at β=0.99, 1.01, and 1.4(3)%, 0.5(3)%, 0.1(1)% for

near-zero modes at β=0.99, 1.01, 1.03, respectively. As expected from the localization

property of zero modes, their ratios are larger than those of near-zero modes. In spite of

the truncation at ρψ ∼ 0.0002, the analysis in the range of ρψ < 0.0002 might be enough

– 7 –
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to grasp the nature of Dirac modes, at least for near-zero modes, since ρψ > 0.0002 are

responsible only for a few % of the total squared norms. Figure 5 show the histogram

ratios Rψ(ρψ) plotted in the range of ρψ < 0.0002, respectively, for both zero and near-zero

modes at β=0.99, 1.01 and 1.03.

4.1 Results for zero Dirac modes

The exact zero Dirac modes in compact QED have been studied with regard to their

relation to topological excitations [23], and to their spatial distributions [25]. The exact zero

modes in compact QED can be found only in the confinement phase [23, 25]. No detailed

correlation between any of the topological phenomena and the zero-mode degeneracy of

the overlap-Dirac operator was found in ref. [23].

While we have only a few dozen of zero modes in 48 gauge configurations and the

statistical errors are consequently rather large, the spatial fluctuations of zero modes seem

to have no remarkable correlation with monopole currents. There are naively three pos-

sibilities: 1)The eigenfunctions fluctuate in a very complicated way forming multifractal

structures. 2)The zero-mode’s fluctuation (especially ρψ < 0.0002) simply have little cor-

relation with monopoles and would be governed by some other possible objects. 3)The

apparent correlations between zero modes and monopoles appear only in the sector of

ρψ > 0.0002, which we have discarded.

Even if the relationship between monopoles and zero modes is originally simple, the

complicated monopole structure could lead to the complex shape of zero modes, which our

present simple analysis may not detect. (The monopole currents in fact occupy almost half

of the total volume of 123 × 12 = 20736 and their structures themselves are complicated.)

Moreover, the averaging in eq. 4.1 can be harmful in this case. In order to verify this

possibility 1), it would be needed to compute multifractal dimensions of the modes by

analyzing the scaling of eigenfunction moments, which is left for further study. In the case

of 2) and 3), our present analysis can cast no more light on the nature of zero modes. The

authors in ref. [36] conjectured that Dirac zero modes mainly appear at the intersections

of vortexes. In such a rather complicated case, we need another analysis.

In any case, we would need more statistics and detailed analyses in order to make

definite conjectures upon zero modes.

4.2 Results for near-zero Dirac modes

As for near-zero Dirac modes, one can see the outstanding anti-correlation in figure 5. The

histogram ratio Rψ(ρψ) is clearly larger than 1 at small ρψ and less than 1 at large ρψ beyond

the statistical errors. Although the values of Rψ(ρψ) themselves are slightly different among

three β’s, β=0.99, 1.01 and 1.03, the bulk properties are surely the same, which means the

existence of the universal anti-correlations between near-zero Dirac modes and monopole

currents around the critical coupling βc. The important point is the universality of the anti-

correlation between near-zero modes and monopoles. This simple rule does not drastically

change before/after the phase transition. Near-zero modes are “scattered” by monopole

clusters.

– 8 –
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Figure 6: The unfolded nearest-neighbor level spacing distributions Plat(s) at β =0.99, 1.01 and

1.03. The solid lines denote the Wigner distribution function PWig(s) ≡ 32
π2 s2 exp(− 4

πs2) and the

dashed lines the Poisson distribution function PPoi(s) = exp(−s).

5. Discussions and speculations

5.1 Dirac eigenvalues and Chiral condensate

As we have seen in section 3, Dirac eigenvalues have non-vanishing density ρev(0) at the

spectral origin in the chiral broken phase, and this non-vanishing value is directly connected

to the non-zero chiral condensate 〈ψ̄ψ〉 via the Banks-Casher relation. The non-vanishing

ρev(0) is generated by the “repulsive force” among the eigenvalues: The eigenvalues of the

overlap-Dirac operator lying on the circumference of the circle in a complex plain repel

each other, and consequently near-zero eigenvalues are pushed towards the spectral origin

forming the non-zero ρev(0). Namely, the driving force of the chiral symmetry breaking is

the “repulsive force” among Dirac eigenvalues. On the other hand, when ρev(0) is zero,

the repulsive force is considered to be weaker or zero. The magnitude of this force can be

revealed by level statistics.

We show in figure 6 the unfolded nearest-neighbor level spacing distributions Plat(s)

of the low-lying Dirac eigenvalues obtained at β=0.99, 1.01 and 1.03. The solid lines

denote the Wigner distribution function PWig(s) ≡
32
π2 s2 exp(− 4

π
s2) and the dashed lines the

Poisson distribution function PPoi(s) = exp(−s). The Wigner distribution function PWig(s)

is a good approximation of the original distribution function obtained by the random matrix

theory (RMT) for the chiral unitary ensemble (chUE). The Poisson distribution PPoi(s)

appears, for example, in the system where eigenenergy levels have no correlation with each

other.

The level spacing distributions Plat(s) at β=0.99 and 1.01 show the good coincidence

with PWig(s). The manifestation of the Wigner distribution, at β=0.99 and 1.01 in the

chiral broken phase, implies the level repulsion among the low-lying eigenvalues, which

is consistent with the non-vanishing eigenvalue density ρev(0) at the spectral origin. On

the other hand, at β=1.03 in the chiral restored phase, Plat(s) coincides with neither the

Wigner distribution PWig(s) nor the Poisson distribution PPos(s). Plat(s) at β=1.03 seems

to be on the way from the Wigner to the Poisson distribution. As a remarkable fact, you

can find the long tail of Plat(s) stretching even at s = 4. This tendency seen at β=1.03

– 9 –
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shows a weaker repulsion among the low-lying eigenvalues than at β=0.99 and 1.01, which

leads to small or zero eigenvalue density ρev(0) at the spectral origin. The Wigner-Poisson

transition in the nearest-neighbor level spacing of the low-lying Dirac eigenvalues appears

at β > 1.01, almost at the same time as the confinement-deconfinement phase transition.

So far, we have mainly shown the numerical facts obtained in the present analysis. In

the next subsection, we make a possible speculations about the chiral transition mechanism

in compact QED.

5.2 Possible speculations

What is the origin of a Wigner-Poisson transition in the neighboring level spacing dis-

tributions of the low-lying Dirac eigenmodes, which is responsible for the chiral phase

transition? The Wigner/Poisson distributions in neighboring level spacing distributions

can be also found in classically chaotic/regular systems. Berry and Tabor [37] drew the

conclusion that in a classically integrable system with more than one degree of freedom

the level spacing distribution of quantum spectra obeys the Poisson distribution. We can

also find in ref. [38] the famous conjecture by Bohigas, Giannoni and Schmit stating that

the level statistics of a quantum system whose classical counterpart is chaotic do not show

a dependence on the details of the dynamics but depend only on the global symmetry of

the system. Level statistics in such a system coincide with those obtained by the random

matrix theory with the same global symmetry. (This conjecture is not always true. A

quantum kicked rotor does not satisfy the conjecture.) The chaoticity or the complexity of

the system leads to the Wigner distribution in level spacing.

The key player for the Wigner-Poisson transition in compact QED would be monopoles.

As was seen in section 4, there exist universal anti-correlations between monopoles and

near-zero Dirac eigenmodes. In the system where large monopole clusters exist, the near-

zero modes are “scattered” by monopoles in a very complicated way, which results in the

Wigner distribution of the neighboring level spacing. When there exist only small monopole

clusters in a system, this complexity is much weakened and the level spacing exhibits the

Poisson-like distribution. The level dynamics of low-lying Dirac eigenvalues are simply

controlled by monopoles’ clustering-declustering feature.

Then the fact that the chiral symmetry breaking is always accompanied by the charge

confinement in compact QED could be naturally understood from the microscopic view-

point. On one hand, the monopoles’ clustering-declustering feature is surely responsible for

the confinement-deconfinement transition. On the other hand, the monopoles’ clustering-

declustering transition gives rise to the change in the complexity of the system and conse-

quently in the level dynamics of low-lying Dirac eigenmodes, which leads to the change in

the eigenvalue density at the spectral origin, or equivalently in the chiral condensate 〈ψ̄ψ〉.

We finally note that the chaoticity and the level spacing distribution in gauge theories

were also investigated by several groups [22, 39 – 44].

6. Summary

We have studied the properties of low-lying Dirac modes in quenched compact QED at
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β=0.99, 1.01 and 1.03, employing 123×12 lattices and the overlap formalism for the fermion.

We have found several features worth noting:

• The nearest-neighbor level spacing distribution of the Dirac eigenvalues coincides

with the Wigner distribution at β = 0.99, 1.01 < βc, and it seems to be on the way

from the Wigner to the Poisson distribution at β = 1.03 > βc, which is consistent

with the non-vanishing (vanishing) chiral condensate at β < βc (β > βc).

• The chiral phase transition in compact QED is very different from that in QCD at

finite temperature. The near-zero Dirac modes are much delocalized in the chiral

restored phase in compact QED, whereas they are strongly localized in finite tem-

perature QCD exhibiting the Anderson-transition(AT) of the vacuum [45, 46].

• Near-zero modes have been found to have universal anti-correlations with monopole

world lines below/above the critical β.

The anti-correlation between monopoles and near-zero modes indicates that near-zero

modes are “scattered” by monopole currents in a complicated way, which is considered

as the origin of the critical behaviors of low-lying Dirac eigenmodes. The chiral phase

transition in 4D compact QED might be then associated with the complexity of the vacuum,

which is brought about by the clustering-declustering transition of monopoles.
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